Quantitative analysis of PC MRI velocity maps: pulsatile flow in cylindrical vessels.
نویسندگان
چکیده
The accuracy of MR phase contrast (PC) velocity mapping, and the subsequent derivation of wall shear stress (WSS) values, has been quantitatively assessed. Using a retrospectively gated PC gradient-echo technique, the temporal-spatial velocity fields were measured for pulsatile flow in a rigid cylindrical vessel. The experimental data were compared with values derived from the Womersley solution of the Navier-Stokes equations. For a sinusoidal waveform, the overall root-mean-square (rms) difference between the measured and analytical velocities corresponded to 13% of the peak fluid velocity. The WSS derived from the data displayed a 14% rms difference with the analytical model. As an example of a more complicated flow, a triangular saw-tooth waveform was deconstructed into its Fourier components. Velocity maps and the WSS were calculated by the superposition of the individual solutions, weighted by the Fourier series coefficient, for each harmonic. The velocity and experimentally derived WSS agreed with the analytical results (4% and 12% rms difference, respectively). Evaluation of the analytical models allowed an estimate of the inherent accuracy in the measurement of velocity maps and WSS values.
منابع مشابه
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
BACKGROUND Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model ...
متن کاملAnalysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps
We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity pro...
متن کاملA Mathematical Model for Blood Flow Through Narrow Vessels with Mild-Stenosis (RESEARCH NOTE)
In this paper we examine the effect of mild stenosis on blood flow, in an irregular axisymmetric artery with oscillating pressure gradient. The Herschel-Bulkley fluid model has been utilized for this study. The combined influence of an asymmetric shape and surface irregularities of constriction has been explored in this computational study. An extensive quantitative analysis has been performed ...
متن کاملAn implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملPERFORMANCE MODEL AND ANALYSIS OF BLOOD FLOW IN SMALL VESSELS WITH MAGNETIC EFFECTS
In this paper consider a two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes with effects of magnetic. The analytical results obtained in the proposed model for effective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2001